Comparing Fractions Calculator

Compare Fractions

Try integers, decimals, fractions, mixed numbers, or percents.

Compare: and

Step-by-Step Explanation:

  1. Input Types Supported:

    • Integers: Example: 2, 10
    • Decimals: Example: 1.75, 2.5
    • Fractions: Example: 3/4, 7/8
    • Mixed Numbers: Example: 1 1/2, 2 3/4
    • Percentages: Input should be converted to decimals manually, e.g., 75% as 0.75.
  2. Conversion to Decimal Format:

    • For fractions, such as 3/4, the calculator divides the numerator (3) by the denominator (4): 34=0.75
    • For mixed numbers, like 1 1/2, it converts the whole number and fraction separately: 1+12=1+0.5=1.5
    • For decimals, the input is used as-is, e.g., 1.875 is already in decimal form.
  3. Comparison of Values: Once both numbers are converted into decimal format, the comparison is made using standard mathematical symbols:

    • Greater than (>): When the first value is larger than the second value.
    • Less than (<): When the first value is smaller than the second value.
    • Equal to (=): When both values are equal.

Example 1:

Input:

  • First value: 1 3/4
  • Second value: 1.875

Steps:

  1. Convert 1 3/4 to decimal: 1+34=1+0.75=1.75
  2. Use the second value 1.875 as-is (decimal format).

Comparison:

Since 1.75 < 1.875, the result is:

13/4<1.875

Example 2:

Input:

  • First value: 2/5
  • Second value: 0.4

Steps:

  1. Convert 2/5 to decimal: 25=0.4
  2. The second value 0.4 is already in decimal format.

Comparison:

Since 0.4 = 0.4, the result is:

25=0.4

Example 3:

Input:

  • First value: 3 1/2
  • Second value: 3.75

Steps:

  1. Convert 3 1/2 to decimal: 3+12=3+0.5=3.5
  2. Use 3.75 as-is (decimal format).

Comparison:

Since 3.5 < 3.75, the result is:

312<3.75

Advertisements

Formula for Comparison:

Let the two fractions or mixed numbers be Value1\text{Value}_1 and Value2\text{Value}_2, respectively. The comparison is based on:

Decimal Value1compared toDecimal Value2

Where:

  • If Decimal Value1>Decimal Value2\text{Decimal Value}_1 > \text{Decimal Value}_2, then Value1>Value2\text{Value}_1 > \text{Value}_2
  • If Decimal Value1<Decimal Value2\text{Decimal Value}_1 < \text{Decimal Value}_2, then Value1<Value2\text{Value}_1 < \text{Value}_2
  • If Decimal Value1=Decimal Value2\text{Decimal Value}_1 = \text{Decimal Value}_2, then Value1=Value2\text{Value}_1 = \text{Value}_2
Advertisements